

3D Modeling & 3D Laser Scanning for Bridge Inspection and Structural Analysis

Yelda Turkan, Ph.D. Simon Laflamme, Ph.D., PE Iowa State University

Current Bridge Inspection Methodology

Current Approach:

- Visual inspection
- Conventional surveying methods

Limitations:

- Subjective and tedious data collection
- Cannot capture detailed geometries
- Requires extensive engineering resources to manually review and classify visual changes of structures
- Difficult to assess how local deformations and visual changes interact to drive global decaying patterns of bridges and structures

3D Modeling

- SmartMarket Report (2012)
- FHWA Initiative
 - BIM
 - CIM
 - Heavy Civil
 - BrIM
 - 3D Engineered Models

BrIM Enabled Inspection

Data Collection

Bridges 8550.2.R.030 and 8550.2.L.03

Bridges 8548.4.R.030 and 8548.4.L.030

- Iowa DOT Office of Bridges and Structures
 - Element Condition Data
 - 2D Drawings (pdf files)
 - Specifications

3D Modeling

- Autodesk Revit
- Modeling with the same level of detail:
 - deck, super structure, sub-structure, channel and piers

Revit to BIM 360 Glue

- Cloud storage
- Access and modify 3D BrIM in the field

BrIM Enabled Inspection Process

BrIM On-site Demonstration

- Qualtrics Survey
 - Eight state DOTs; bridge engineer to director of bureau of structures

Task	Results	Remarks
nspection Means	71% paper based	
	14% PDA	
	14% others	
Number of Inspectors	15 – 75	The number can reach up to 650 with all qualified consultants
No. of inspectors in each	2 – 4	Can reach to 7 for major over water bridges
BrIM usage in design & construction	33% using it	
Challenges in the current practice	60% have challenges	 Close observation and management to stay on compliance Training inspectors Inadequate staff Aging staff New problems with new bridge designs.
uture use of BrIM in	71% denied any future plans	
BrIM staff knowledge	62% poor – fair	
	13% good	
	25% V.Good - Exc	
Jsefulness of BrIM for nspection	71% neutral	29% sees it as useful

В

В

3D Imaging for Infrastructure Projects

3D LiDAR data of I-35 Bridge in 2007

http://www.aerometric.com/projects/i-35w-bridge-collapse

- Importance of detailed geometric analysis of bridges and structures
- Cost, safety, and mobility implications of detailed geometric analysis of structures
- Limitations of current methods
- 3D laser scanning and automatic data processing for reliable and detailed bridge inspection and structural analysis
- Potential value of laser scanning in bridge and infrastructure programs and projects
- Risks, barriers and further development

Research Vision

Compact Representation

$$z_j = \sum_{i=1}^h \gamma_i \phi_i(x_j, y_j)$$

universal approximation capability

Laflamme, S., Slotine, J.-J., & Connor, J. J., "Self-Organizing Input Space for Control of Structures", Smart Mater. Struct. 21 (2012), 16pp.

Sequential Identification

Network Resolution

Example

Application to point clouds

Application to point clouds

Integration with 3D Scanning

Challenges

- Need to learn on-the-spot
- Develop integrated learning and scanning strategies
- Establish network design procedures (resolution vs size)
- Recognize shapes and features

Integration with 3D Scanning

Thank you.. Are there any questions?

3D Modeling & 3D Laser Scanning for Bridge Inspection and Structural Analysis

Yelda Turkan & Simon Laflamme
Civil, Construction and Env. Engineering
Iowa State University
yturkan@iastate.edu; laflamme@iastate.edu